Badanie bezpieczeństwa IPv6

lp	wykonawca	grupa (<i>g</i>)
1.	Grzegorz Pol	3
2.	Artur Mazur	
3.	Michał Grzybowski	
4.		
5.		

Tabela 1.

zadanie	Funkcja skrótu	Grupa DH	Protokół szyfrowania	Zestaw przekształceń
1.	MD5	2	DES	AH-MD5-HMAC
				ESP-DES
2.	SHA	5	3DES	AH-SHA-HMAC
				ESP-3DES
3.	MD5	2	AES	ESP-SHA-HMAC
				ESP-AES
4.	SHA	5	AES 192	ESP-MD5-HMAC
				ESP-SEAL
5.	MD5	5	AES 256	AH-MD5-HMAC
				ESP-AES

Tabela 2. Plan adresacji:

	IPv6
LAN1	2001:g*10+1:1:1::/64
WAN2	2001:g*10+2:2:2::/64
LAN3	2001:g*10+3:3:3::/64
LAN4	2001:g*10+4:4:4::/64
Lo1	1.1.1.1/32
Lo2	2.2.2.2/32
Lo3	3.3.3/32
Tunel0	2001:g*10+5:15:15::/64

Topologia:

1. Wyznaczyć adresy dla elementów składowych sieci na podstawie tabeli 1 zależnie od numeru grupy (G) i numeru zadania. Wyniki podać w poniższej tabeli:

nazwa urządzenia	interfejs	adres/maska
	Fa0/1	2001:31:1:1:1
D1	S0/0/0	2001:32:2:2::1
	Lo1	
	Tunnel0	
	Fa0/0	2001:33:3:3:1
R2	S0/0/0	2001:32:2:2::2
	Lo2	
	Fa0/0	2001:33:3:3:2
D2	Fa0/1	2001:34:4:4::1
r.j	Lo3	
	Tunnel0	
K1	Eth0	2001:31:1:1::100
K3	Eth0	2001:34:4:4::100

2. Przygotowanie topologii sieci:

A. Zbudować sieć według podanej topologii i wyznaczonego planu adresacji. Poniżej wkleić zrzut ekranu z konfiguracją interfejsów routerów **R1, R2, R3** i komputerów **K1** i **K3**.

```
zrzut ekranu interfejsów R1
interface FastEthernet0/1
no ip address
duplex auto
speed auto
 ipv6 address 2001:31:1:1::1/64
ipv6 enable
interface Serial0/0/0
no ip address
ipv6 address 2001:32:2:2:1/64
ipv6 enable
no fair-queue
clock rate 125000
        zrzut ekranu interfejsów R2
 interface FastEthernet0/0
  no ip address
  duplex auto
  speed auto
  ipv6 address 2001:33:3:3::1/64
  ipv6 enable
 interface FastEthernet0/1
  no ip address
  shutdown
  duplex auto
  speed auto
 interface Serial0/0/0
  no ip address
  ipv6 address 2001:32:2:2:2/64
  ipv6 enable
  no fair-queue
```


B. Sprawdzić wzajemną osiągalność sąsiadów przy pomocy komendy ping.

	R1	R2	R3	K1	K3
R1	+	+	-	+	-
R2	+	+	+	-	-
R3	-	+	+	-	+
K1	+	-	-	+	-
K3	-	-	+	-	+

C. Sprawdzić działanie snifera WireShark na komputerze K2.

				zrzut ekranu polecenia	a ping dla H	R2-R3		
	4 5	5.022027	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=0
	5 5	5.022029	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=0
	6 5	5.022661	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=1
	7 5	5.022665	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=1
	8 5	5.022668	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=1
	9 5	5.022670	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=1
1	.0 5	5.022671	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=2
1	.1 5	5.022673	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=2
1	.2 5	5.022675	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=2
1	.3 5	5.022676	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=2
1	.4 5	5.022678	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=3
1	.5 5	5.022680	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=3
1	.6 5	5.022681	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=3
1	.7 5	5.022683	2001:33:3:3::2	2001:33:3:3::1	ICMPV6	114 Echo	(ping)	reply id=0x0270, seq=3
1	.8 5	5.023282	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=4
1	.9 5	5.023289	2001:33:3:3::1	2001:33:3:3::2	ICMPV6	114 Echo	(ping)	request id=0x0270, seq=4

D. Skonfigurować routing dynamiczny w oparciu o protokół OSPFv3 na routerach w sieci. Poniżej wkleić zrzut ekranu z poprawną konfiguracją routera R1, R2 i R3.

Zrzut ekranu polecenia show ipv6 protocols dla routera R1 R1#show ipv6 protocols IPv6 Routing Protocol is "connected" IPv6 Routing Protocol is "ospf 100" Interfaces (Area 0): Serial0/0/0 FastEthernet0/1 Redistribution: None Zrzut ekranu polecenia show ipv6 ospf protocols dla routera R2 R2#show ipv6 protocols IPv6 Routing Protocol is "connected" IPv6 Routing Protocol is "ospf 100" Interfaces (Area 0): FastEthernet0/0 Serial0/0/0 Redistribution: None Zrzut ekranu polecenia show ipv6 ospf protocols dla routera R3 R3#show ipv6 protocols IPv6 Routing Protocol is "connected" IPv6 Routing Protocol is "ospf 100" Interfaces (Area 0): FastEthernet0/1 FastEthernet0/0 Redistribution: None Zrzut ekranu polecenia show ipv6 ospf neighbors dla routera R1 R1#show ipv6 ospf neighbor Neighbor ID Pri Dead Time Interface ID Interface State 00:00:30 2.2.2.2 1 FULL/ Seria10/0/0 6 Zrzut ekranu polecenia show ipv6 ospf neighbors dla routera R2

R2#show ipv6 ospf neighbor

Neighbor ID 3.3.3.3	Pri 1	State FULL/BDR	Dead Time 00:00:33	Interface ID 4	Interface FastEthernet0/
1.1.1.1	1	FULL/ -	00:00:31	6	Serial0/0/0
R3#show ipv6	ospf nei	Zrzut ekranu polece ghbo r	enia show ipv6 ospt ne	eighbors dia routera R	3
Neighbor ID 2.2.2.2 Ø R3#	Pri 1	State FULL/DR	Dead Time 00:00:33	Interface ID 4	Interface FastEthernet0/

E. Zweryfikować poprawność działania routingu. Sprawdzić wzajemną osiągalność węzłów w sieci.

	R1	R2	R3	K1	K3
R1	+	+	+	+	+
R2	+	+	+	+	+
R3	+	+	+	+	+
K1	+	+	+	+	+
K3	+	+	+	+	+

F. Wylistować tablicę routingu routerów R1, R2 i R3.

Zrzut ekranu polecenia show ipv6 route dla routera R1

```
R1#sh ipv6 route
IPv6 Routing Table - Default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
B - BGP, M - MIPv6, R - RIP, I1 - ISIS L1
I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
              EX - EIGRP external
              0 - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
С
        2001:31:1:1::/64 [0/0]
        via FastEthernet0/1, directly connected
2001:31:1:1:1/128 [0/0]
via FastEthernet0/1, receive
L
C
        2001:32:2:2::/64 [0/0]
        via Serial0/0/0, directly connected 2001:32:2:2:1/128 [0/0]
L
        via Serial0/0/0, receive
2001:33:3:3::/64 [110/782]
via FE80::1AEF:63FF:FED9:4D18, Serial0/0/0
2001:34:4:4::/64 [110/783]
via FE80::1AEF:63FF:FED9:4D18, Serial0/0/0
Û
Ω
L
        FF00::/8 [0/0]
          via Null0, receive
```

Zrzut ekranu polecenia show ipv6 route dla routera R2

R2#sh ipv6 route IPv6 Routing Table - Default - 7 entries Codes: C - Connected, L - Local, S - Static, U - Per-user Static route B - BGP, M - MIPv6, R - RIP, I1 - ISIS L1 I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP EX - EIGRP external EX - E1GRP external 0 - 0SPF Intra, 0I - 0SPF Inter, 0E1 - 0SPF ext 1, 0E2 - 0SPF ext 2 0N1 - 0SPF NSSA ext 1, 0N2 - 0SPF NSSA ext 2 2001:31:1:1::/64 [110/782] via FE80::1AEF:63FF:FED9:B108, Serial0/0/0 2001:32:22::/64 [0/0] via Serial0/0/0, directly connected 2001:32:22::2/128 [0/0] uia Serial0/0/0, measure 0 С L via Serial0/0/0, receive 2001:33:3:3::/64 [0/0] ſ. via FastEthernet0/0, directly connected 2001:33:3:3:1/128 [0/0] via FastEthernet0/0, receive 2001:34:4:4::/64 [110/2] L Û via FE80::5ABC:27FF:FE39:CF98, FastEthernet0/0 FF00::/8 [0/0] L via Null0, receive Zrzut ekranu polecenia show ipv6 route dla routera R3 R3#show ipv6 route IPv6 Routing Table - Default - 7 entries Codes: C - Connected, L - Local, S - Static, U - Per-user Static route B - BGP, M - MIPv6, R - RIP, I1 - ISIS L1 I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP EX - EIGRP external 0 - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2 ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2 2001:31:1:1::/64 [110/783] via FE80::1AEF:63FF:FED9:4D18, FastEthernet0/0 2001:32:2:2::/64 [110/782] via FE80::1AEF:63FF:FED9:4D18, FastEthernet0/0 2001:22:2:2::/64 [0] 0 n 2001:33:3:3::/64 [0/0] ſ. via FastEthernet0/0, directly connected 2001:33:3:3::2/128 [0/0] L via FastEthernet0/0, receive С 2001:34:4:4::/64 [0/0] via FastEthernet0/1, directly connected 2001:34:4:4::1/128 [0/0] L via FastEthernet0/1, receive FF00::/8 [0/0] via Null0. receive

3. Badanie tunelu IPSec:

A. Skonfigurować politykę IKE i klucz współdzielony na routerze R1 i R3. Wymagane parametry polityki IKE są podane w tabeli 1, jako klucza współdzielonego użyć "cisco". Zweryfikować i wkleić poniżej zrzuty ekranu potwierdzające poprawność wprowadzonych ustawień.

Zrzut ekranu polecenia show crypto isakmp policy dla routera R1

R1#sh crypto isakmp policy

Global IKE policy	
Protection suite of priority 1	
encryption algorithm:	AES - Advanced Encryption Standard (128 bit keys
).	
hash algorithm:	Message Digest 5
authentication method:	Pre-Shared Key
Diffie-Hellman group:	#2 (1024 bit)
lifetime:	43200 seconds, no volume limit
Zrzut ekranu po	lecenia show crypto isakmp policy dla routera R3

R3#show crypto isakmp policy

Global IKE policy Protection suite of priority 1 encryption algorithm:	AES – Advanced I	Encryption Standard	(128 bit keys
). hash algorithm: authentication method: Diffie-Hellman group: lifetime:	Message Digest Pre-Shared Key #2 (1024 bit) 43200 seconds, I	5 no volume limit	

B. Skonfigurować zestaw przekształceń IPSec i profil IPSec na routerze R1 i R3. Wymagane parametry są podane w tabeli 1. Zweryfikować i wkleić poniżej zrzuty ekranu potwierdzające poprawność wprowadzonych ustawień.

```
Zrzut ekranu polecenia show crypto ipsec transform-set dla routera R1
R1#sh crypto ipsec transform-set
Transform set lody: { esp-aes esp-sha-hmac }
   will negotiate = { Tunnel, },
Transform set #$!default_transform_set_1: { esp-aes esp-sha-hmac }
   will negotiate = { Transport, },
Transform set #$!default transform set 0: { esp-3des esp-sha-hmac }
   will negotiate = { Transport, },
                  Zrzut ekranu polecenia show crypto ipsec transform-set dla routera R3
 R3#show crypto ipsec transform-set
 Transform set lody: { esp-aes esp-sha-hmac }
    will negotiate = { Tunnel, },
 Transform set #$!default_transform_set_1: {    esp-aes esp-sha-hmac    }
    will negotiate = { Transport. }.
 Transform set #$!default_transform_set_0: {    esp-3des esp-sha-hmac
                                                                            }
    will negotiate = { Transport,
                                       }.
                    Zrzut ekranu polecenia show crypto ipsec profile dla routera R1
R1#sh crypto ipsec profile
IPSEC profile 1
        Security association lifetime: 4608000 kilobytes/3600 seconds
        Responder-Only (Y/N): N
        PFS'(Y/N): N
        Transform sets={
                 lody: { esp-aes esp-sha-hmac } ,
        }
                    Zrzut ekranu polecenia show crypto ipsec profile dla routera R3
     R3#show crypto ipsec profile
     IPSEC profile 1
             Security association lifetime: 4608000 kilobytes/3600 seconds
             Responder-Only (Y/N): N
             PFS'(Y/N): N
             Transform sets={
                     lody: { esp-aes esp-sha-hmac } ,
             }
```

C. Skonfigurować wirtualny interfejs tunelu (VTI), przypisać wcześniej utworzony profil IPSec do tunelu. Zweryfikować i wkleić poniżej zrzuty ekranu potwierdzające poprawność wprowadzonych ustawień.

Zrzut ekranu polecenia show interface tunnel 0 dla routera R1 R1#sh interfaces tunnel 0 TunnelO is up, line protocol is up Hardware is Tunnel MTU 1367 bytes, BW 100 Kbit/sec, DLY 50000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation TUNNEL, loopback not set Keepalive not set Tunnel source 2001:32:2:2:1 (Serial0/0/0), destination 2001:33:3:3:2 Tunnel protocol/transport IPSEC/IPV6 Tunnel TTL 255 Tunnel transport MTU 1367 bytes Tunnel transmit bandwidth 8000 (kbps) Tunnel receive bandwidth 8000 (kbps) Tunnel protection via IPSec (profile "1") Last input never, output 00:05:04, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 1 Queueing strategy: fifo Output queue: 0/0 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 18 packets input, 1376 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 21 packets output, 2328 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out

Zrzut ekranu polecenia show interface tunnel 0 dla routera R1 R3#sh interfaces tunnel 0 Tunnel0 is up, line protocol is up Hardware is Tunnel MTU 1367 bytes, BW 100 Kbit/sec, DLY 50000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation TUNNEL, loopback not set Keepalive not set Tunnel source 2001:33:3:3::2 (FastEthernet0/0), destination 2001:32:2:2::1 Tunnel protocol/transport IPSEC/IPV6 Tunnel TTL 255 Tunnel transport MTU 1367 bytes Tunnel transmit bandwidth 8000 (kbps) Tunnel receive bandwidth 8000 (kbps) Tunnel protection via IPSec (profile "1") Last input never, output 00:05:24, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/0 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 18 packets input, 1376 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 22 packets output, 2392 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 underruns 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out Zrzut ekranu polecenia show crypto isakmp sa dla routera R1 R1#sh crypto isakmp sa IPv4 Crupto ISAKMP SA dst state conn-id status src IPv6 Crupto ISAKMP SA dst: 2001:32:2:2:1 src: 2001:33:3:3::2 state: OM IDLE conn-id: 4001 status: ACTIVE Zrzut ekranu polecenia show crypto isakmp sa dla routera R3 R3#sh crypto isakmp sa IPv4 Crypto ISAKMP SA dst src state conn-id status IPv6 Crypto ISAKMP SA dst: 2001:32:2:2::1 src: 2001:33:3:3::2 state: QM_IDLE conn-id: 4001 status: ACTIVE

Zrzut ekranu polecenia show crypto ipsec sa ipv6 dla routera R1

R1#sh crypto ipsec sa ipv6 interface: Tunnel0 Crypto map tag: TunnelO-head-0, local addr 2001:32:2:2:1 protected vrf: (none)
local ident (addr/mask/prot/port): (::/0/0/0)
remote ident (addr/mask/prot/port): (::/0/0/0) current_peer 2001:33:3:3::2 port 500 PERMIT, flags={origin_is_acl,} #pkts encaps: 21, #pkts encrypt: 21, #pkts digest: 21 #pkts decaps: 18, #pkts decrypt: 18, #pkts verify: 18 #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 2, #recv errors 0 local crypto endpt.: 2001:32:2:2::1, remote crypto endpt.: 2001:33:3:3::2 path mtu 1460, ip mtu 1460, ip mtu idb Tunnel0 current outbound spi: 0x896ACAE0(2305477344) PFS (Y/N): N, DH group: none inbound esp sas: spi: 0xC1739D09(3245579529) transform: esp-aes esp-sha-hmac , in use settings ={Tunnel, } conn id: 1, flow_id: AIM-VPN/SSL-2:1, sibling_flags 80000046, crypto map : Tunne10-head-0 sa timing: remaining key lifetime (k/sec): (4537342/3177) IV size: 16 bytes replay detection support: Y Status: ACTIVE inbound ah sas: inbound pcp sas: outbound esp sas: spi: 0x896ACAE0(2305477344) transform: esp-aes esp-sha-hmac , in use settings ={Tunnel, } conn id: 2, flow id: AIM-VPN/SSL-2:2, sibling flags 80000046, crypto map : Tunne10-head-0 sa timing: remaining key lifetime (k/sec): (4537342/3177) IV size: 16 bytes replay detection support: Y Status: ACTIVE outbound ah sas:

Zrzut ekranu polecenia show crypto ipsec sa ipv6 dla routera R3

```
R3#sh crypto ipsec sa ipv6
interface: Tunnel0
     Crypto map tag: Tunnel0-head-0, local addr 2001:33:3:3::2
   protected vrf: (none)
   local ident (addr/mask/prot/port): (::/0/0/0)
   remote ident (addr/mask/prot/port): (::/0/0/0)
   current_peer 2001:32:2:2::1 port 500
      PERMIT, flags={origin_is_acl,}
    #pkts encaps: 22, #pkts encrypt: 22, #pkts digest: 22
#pkts decaps: 18, #pkts decrypt: 18, #pkts verify: 18
    #pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
     #send errors 0, #recv errors 0
      local crypto endpt.: 2001:33:3:3::2,
     remote crypto endpt.: 2001:00:0:0:2;
path mtu 1460, ip mtu 1460, ip mtu idb Tunnel0
current outbound spi: 0xC1739D09(3245579529)
      PFS (Y/N): N, DH group: none
      inbound esp sas:
       spi: 0x896ACAE0(2305477344)
          transform: esp-aes esp-sha-hmac ,
         in use settings ={Tunnel, }
         conn id: 1, flow_id: AIM-VPN/SSL-2:1, sibling_flags 80000046, crypto map
: Tunne10-head-0
         sa timing: remaining key lifetime (k/sec): (4590557/3140)
         IV size: 16 bytes
         replay detection support: Y
         Status: ACTIVE
      inbound ah sas:
      inbound pcp sas:
      outbound esp sas:
       spi: 0xC1739D09(3245579529)
         transform: esp-aes esp-sha-hmac ,
         in use settings ={Tunnel, }
         conn id: 2, flow_id: AIM-VPN/SSL-2:2, sibling_flags 80000046, crypto map
: Tunne10-head-0
         sa timing: remaining key lifetime (k/sec): (4590557/3140)
         IV size: 16 bytes
         replay detection support: Y
         Status: ACTIVE
      outbound ah sas:
```

D. Z komputera K3 poleceniem ping sprawdzić osiągalność interfejsu s0/0/0 routera R2. Wynik ze snifera uruchomionego na komputerze K2 wkleić poniżej.

		Zrzut ekranu snifera	na kompute	erze K2
670 486.320651	2001:32:2:2::1	2001:33:3:3::2	ESP '	186 ESP (SPI=0x896acae0)
671 486.320660	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)
672 487.302109	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)
673 487.302129	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)
674 487.327063	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)
675 487.327081	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)
676 487.483938	cisco_39:cf:98	Cisco_39:cf:98	LOOP	60 Reply
677 488.307318	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)
678 488.307336	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)
679 488.332089	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)
680 488.332098	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)
681 489.076562	Giga-Byt_56:60:4e	Broadcast	ARP	60 who has 10.5.239.254? Tell 10.5.2
682 489.313040	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)

E. Z komputera K3 poleceniem ping sprawdzić osiągalność komputera K1. Wynik ze snifera uruchomionego na komputerze K2 wkleić poniżej.

Zrzut ekranu snifera na komputerze K2

7 5.119905	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)	
8 5.121522	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)	
9 5.121625	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)	
10 6.132764	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)	
11 6.132777	2001:32:2:2::1	2001:33:3:3::2	ESP	186 ESP (SPI=0x896acae0)	
12 6.133909	2001:33:3:3::2	2001:32:2:2::1	ESP	186 ESP (SPI=0xc1739d09)	
13 6.133923	2001:33:3:3::2	2001:32:2:2::1	FSP	186 FSP (SPT=0xc1739d09)	