WOJSKOWA AKADEMIA

TECHNICZNA

Laboratorium

TECHNOLOGIE SIECI TELEINFORMATYCZNYCH

Prowadzący:

Marek Wichtowski

Autorzy:

Elżbieta Oknińska <u>Kamil Piersa</u> Krzysztof Piotrowski Grzegorz Pol Marcin Przerwa

Grupa szkoleniowa:

I7G2S1

Numer podgrupy:

3

1. Schemat sieci

Poniższy schemat został stworzony za pomocą programu Packet Tracer

2. Skonfigurować routery R1 oraz R2 do pracy zdalnej

Na początku profilaktycznie sprawdzamy wersję oprogramowania routera:

```
R1>show version
Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-IPBASE-M), Version 12.3(6b), RELEASE SOFTWARE (fc1)
Copyright (c) 1986-2004 by cisco Systems, Inc.
Compiled Wed 19-May-04 23:03 by dchih
Image text-base: 0x80008098, data-base: 0x80ECF804
```

Z show version nie wynika konieczność konfiguracji telnetu czy ssh. Kolejnym krokiem jest przejście w tryb uprzywilejowany oraz ustawienie hasła na ograniczenie do tego przejścia

```
R1>enable
R1#configure terminal
R1(config)#enable password Cisco
```

Po ustawieniu hasła, osoba chcąca przejść do trybu uprzywilejowanego będzie musiała je znać. Z trybu nieuprzywilejowanego nie można przejść do konfiguracji interfejsu. Następnie przeprowadzamy konfigurację dostępu zdalnego do routera R1 w poniższy sposób:

```
R1(config)# line vty 0 4
R1(config-line)# password cisco
R1(config-line)# login
```

```
R1(config-line)# exit
R1(config)# _
```

oraz w sposób adekwatny routera R2:

```
R2(config)# line vty 0 4
R2(config-line)# password cisco
R2(config-line)# login
R2(config-line)# exit
R2(config)#
```

W powyższych konfiguracjach użyliśmy polecenia line vty 0 4 by móc dostać się do urządzenia. Cyfry użyte we wspomnianej komendzie informują nas o zakresie sesji jakie będą mogły być jednocześnie ustanowione przy połączeniu z wykorzystanie protokołu telnet. W naszym przykładzie liczba możliwych jednocześnie występujących sesji wynosi 5.

3. Zbudować sieć prywatną dla serwerów SRV1 i SRV2 z zakresu 192.168.3.0/24

Interfejsowi Fa0/0 routera R1 przypisany został adres 192.168.3.1/24:

```
R1(config)#interface fastEthernet 0/0
R1(config-if)#ip address 192.168.3.1 255.255.255.0
R1(config-if)#no shutdown
```

4. Ustawić DHCP tak na routerze R1, aby przyznawało serwerom SRV1 i SRV2 adresy IP skojarzone z

ich adresem karty sieciowej.

Na początku postanowiliśmy upewnić się, że usługa przekazywania DHCP jest włączona, za pomocą poniższej komendy:

R2(config)#service dhcp

Komenda service dhcp uruchamia serwer dhcp i Relay Agent (nasłuchuje podsieć i wyłapuje zapytania dhcp). Następnie stworzyliśmy pulę pulaR1 podając adres sieci oraz maskę podsieci. Następnie skojarzyliśmy adres ip 192.168.3.2 dla urządzenia SRV1 o adresie MAC: 01000c297dc472

```
R1 (config) #ip dhcp pool pulaR1
R1 (dhcp-config) #network 192.168.3.0 255.255.255.0
R1 (dhcp-config) #default-router 192.168.3.1
R1 (dhcp-config) #host 192.168.3.2 255.255.0
R1 (dhcp-config) #client-identifier 01000c297dc472
```

W podobny sposób skojarzyliśmy urządzenie SRV2 (adres ip 192.168.3.3 dla urządzenia o adresie MAC: 01000c29a5b105):

```
R1(config)#ip dhcp pool pulaR12
R1(dhcp-config)#network 192.168.3.0 255.255.255.0
```

R1 (dhcp-config) #default-router 192.168.3.1 R1 (dhcp-config) #host 192.168.3.3 255.255.255.0 R1 (dhcp-config) #client-identifier 01000c29a5b105

5. Ustawić DHCP tak na routerze R2, aby przyznawało adresy z sieci 192.168.3.0/24

Zgodnie z treścią zadania udostępniamy tylko 30 wolnych adresów ip poprzez wykluczenie reszty za pomocą komendy ip dhcp excluded-address:

R2(config) #ip dhcp excluded-address 192.168.3.30 192.168.3.255

Następnie stworzyliśmy pulę pulaR2 podając adres sieci oraz maskę podsieci.

```
R2(config) #ip dhcp pool pulaR2
R2(dhcp-config) #network 192.168.3.0 255.255.255.0
R2(dhcp-config) #default-router 192.168.3.31
```

6. Skonfigurować sieć pomiędzy routerami R1 i R2 za pomocą sieci 10.3.3.0/28

Na początku przechodzimy do shell-a konfiguracyjnego za pomocą polecenia configure terminal. Następnie wybieramy interfejs (w tym przypadku jest to Serial 0/0) za pomocą komendy interface Serial 0/0. Następnie ustawiamy adres IP routera oraz maskę sieciową naszej podsieci. Polecenie clock rate służy do ustawienia ilości cykli na sekundę. To służy do ustawienia poprawnej synchronizacji pomiędzy Routerami R1 i R2. Interferjs szeregowy routera R1 pracuje jako urządzenie DCE – jest nadawcą danych, natomiast router R2 DTE (Data Terminal Equipment) – odbiorcą danych. Zegar transmisji jest ustawiony tylko na routerze R1, ponieważ on odpowiada za komunikację, natomiast R2 jest w tym przypadku urządzeniem odbierającym (końcowym, terminalem). System nie przyjmie wartości zegara większej niż maksymalna obsługiwana przez konkretny interfejs. Można to sprawdzić poprzez wpisanie komendy show controllers serial 0/0 i wtedy ustawić wartość która odpowiada najbliższej wartości jaką może interfejs przyjąć. Przed samym wyjściem wpisujemy komendę no shutdown, która oznacza powołanie interfejsu. Poniżej przedstawione rozwiązanie dla routera R1:

```
Router#configure terminal
R1(config)#interface Serial 0/0
R1(config)#ip address 10.3.3.3 255.255.255.224
R1(config)#clock rate 64000
R1(config)#no shutdown
R1(config)#exit
```

oraz routera R2:

```
Router#configure terminal
R2(config)#interface Serial 0/0
R2(config)#ip address 10.3.3.2 255.255.255.224
R2(config)#no shutdown
R2(config)#exit
```

7. Na serwerach skonfigurować dowolną usługę WWW (wyłączenie jednego serwera nie powoduje

utraty dostępu do usługi). Udostępnić pod adresem publicznym routera R1.

Na początku oznaczamy interfejsy jako publiczne (ip nat outside) i jako prywatne (ip nat inside).

```
R1(config)#interface serial 0/0
R1(config-if)#ip nat outside
R1(config-if)#exit
R1(config)#interface fastEthernet 0/0
R1(config-if)#ip nat inside
```

oraz dla routera R2:

R2(config)#interface serial 0/0 R2(config-if)#ip nat outside R2(config-if)#exit

Następnie definiujemy jak ma być wykonywany NAT. Definiujemy pulę adresów.

```
R1(config)#ip nat pool prywatny 192.168.3.2 192.168.3.3 netmask 255.255.255.0 type rotary
```

Następnie definiujemy translację NAT

ip nat inside destination list 120 pool prywatny

W celu wybrania ruchu definiujemy listę ACL.

access-list 120 permit tcp any host 10.3.3.3 eq www

w której parametry określają:

- permit określa pakiety do przesłania
- tcp protokół TCP
- any każdy host źródłowy
- host określony host (w tym przypadku 10.3.3.3)
- eq wybiera tylko pakiety na wybranym porcie
- www port 80

8. Konfiguracja serwerów, tak aby dostęp do usługi (inna dla SRV1, inna dla SRV2) dla PC1 były dostępne przez jeden port.

Definiujemy pulę adresów.

R1(config)#ip nat pool prywatny 192.168.3.2 192.168.3.3 netmask 255.255.255.0

Kolejnym krokiem jest ustawienie statycznej translacji adresu i portu przeznaczenia:

ip nat inside source static tcp 192.168.3.2 80 10.3.3.3 81 extendable ip nat inside source static tcp 192.168.3.3 80 10.3.3.3 82 extendable

Oznacza to, że ruch prowadzony jest statycznie z SRV1 (192.168.3.2) na port 80 (standardowy dla protokołu http na którym działa usługa www), następnie dzięki ustawionemu NAT na routerze R1 ruch jest kierowany na port 81, i odwrotnie, gdy ruch kierowany jest do SRV1. Dla SRV2 (192.168.3.3) sytuacja wygląda podobnie, lecz router R1 kieruje ruch na port 82.

9. Ustawić NAT na routerze R2, aby PC1 miał dostęp do usług oferowanych przez router R1

Dla routera R1 definiujemy:

• pulę adresów

R1(config)#ip nat pool nowaPula 10.3.3.3 10.3.3.3 netmask 255.255.255.224

• acces liste (ACL)

access-list 1 permit 192.168.3.2 access-list 1 permit 192.168.3.3

• definicję translacji

ip nat inside source list 1 pool nowaPula overload

Analogicznie dla routera R2 definiujemy: pulę adresów,

R2(config)#ip nat pool nowaPula 10.3.3.2 10.3.3.2 netmask 255.255.255.224

• acces liste (ACL)

acces-list 2 permit 192.168.3.0

• definicję translacji

ip nat inside source list 2 pool nowaPula overload

10. Procedura testowa

	Test: telnet
	(System MS Windows XP)
cel:	możliwość wykonywania prac na routerze R1 i R2.
oczekiwany	pojawienie się znaku ">" w konsoli cmd
wynik:	
test:	wpisanie w konsoli cmd: "telnet adres_ip_routera", podanie loginu i hasła.
wynik:	pozytywny – w konsoli pojawił się znak ">" – udane połączenie poprzez telnet.

Test: DHCP na routerze R1 (System MS Windows XP)

cel:	poprawne przypisywanie adresów IP serwerom SRV1 i SRV2 przez router R1		
oczekiwany	po wpisaniu w konsoli cmd polecenia ipconfig /all serwer SVR1 powinien otrzymać adres		
wynik:	192.168.3.2 z maską 255.255.255.0 a serwer SRV2 – 192.168.3.3 z maską 255.255.255.0		
test:	uruchomienie konsoli cmd na wybranym serwerze, podanie komendy ipconfig /all, sprawdzenie		
	czy adres IP znajduje się w odpowiednim przedziale oraz czy posiada poprawną maskę		
wynik:	pozytywny - oba serwery otrzymały adresy z prawidłowego zakresu wraz z 24 bitową maską. SRV1 –		
	192.168.3.2 z maską 255.255.255.0, SRV2 – 192.168.3.3 z maską 255.255.255.0		

Test: DHCP na routerze R2 (System MS Windows XP)

cel:	poprawne przypisywanie adresu IP komputerowi PC1 przez router R2.			
oczekiwany	po wpisaniu w konsoli cmd polecenia ipconfig /all PC1 powinien otrzymać adres z			
wynik:	prawidłowego zakresu 192.168.3.0 wraz z maską 255.255.255.0			
test:	uruchomienie konsoli cmd na PC1, podanie komendy ipconfig /all, sprawdzenie czy adres ip			
	znajduje się w odpowiednim przedziale oraz czy posiada poprawną maskę.			
www.ike	nozytywy komputer etrzymał adres z prawidłowego zakrocu 102,168,20 wraz z maska			

wynik: pozytywny - komputer otrzymał adres z prawidłowego zakresu 192.168.3.0 wraz z maską 255.255.255.0

Test: połączenie pomiędzy routerami R1 i R2 (Konsola routera R1 i R2)

cel: router R1 powinien mieć połączenie z routerem R2 i odwrotnie	!
---	---

oczekiwany	1.	po wprowadzeniu w programie Hyper Terminal na routerze R1 komendy ping	10.3.3.2
wynik:		powinna pojawić się wiadomość o zakończeniu polecenia sukcesem.	
	2.	po wprowadzeniu w programie Hyper Terminal na routerze R2 komendy ping	10.3.3.3
		powinna pojawić się wiadomość o zakończeniu polecenia sukcesem.	
test:	1.	w konsoli routera R1 wprowadzamy komendę ping 10.3.3.2	

- w konsoli routera R2 wprowadzamy komendę ping 10.3.3.3
- wynik:
- 1. pozytywny polecenie ping zakończone sukcesem w 100%.
 - 2. pozytywny polecenie ping zakończone sukcesem w 100%.

Test: protokół FTP (System MS Windows XP)

cel:	użytkownik PC1 powinien mieć dostęp do usługi FTP
oczekiwany	po wpisaniu w eksploratorze Windows adres routera R1 z portem 21 użytkownik powinien uzyskać
wynik:	dostęp
test:	w pasku adresu w eksploratorze Windows wpisujemy adres routera R1 z portem 21
wynik:	pozytywny - użytkownik uzyskał dostęp

Test: prawidłowe działanie wykluczenia adresów hostów (komenda ip dhcp excluded-address) (System MS Windows XP/Linux)

cel: router R2 może przypisać adresy 30 komputerom, gdyż tylko tyle adresów nie zostało wykluczonych
 oczekiwany Po podłączeniu 30 komputerów i sprawdzeniu ich adresów IP powinny otrzymać adres z sieci wynik:
 102 1 CR 2 0 /24

192.168.3.0/24

- test: 1. podłączyć 30 komputerów i sprawdzić ich adresy IP
 - 2. napisać skrypt zmieniający w pętli for adres MAC karty sieciowej dodając nowym poleceniem ifconfig eth0 hw ether XX:XX:XX:XX:XX (gdzie XX:XX:XX:XX:XX to losowy nr MAC).
- wynik: test nie został przeprowadzony ze względu na:
 - 1. braku odpowiedniej ilości jednostek
 - 2. braku jednostki z systemem operacyjnym Linux oraz zbyt małą wiedzą na temat obsługi kart sieciowych na wspomnianym systemie